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Abstract

Motivation: The detection of potential biomarkers of Alzheimer’s disease (AD) is crucial for its early

prediction, diagnosis and treatment. Voxel-wise genome-wide association study (VGWAS) is a

commonly used method in imaging genomics and usually applied to detect AD biomarkers in

imaging and genetic data. However, existing VGWAS methods entail large computational cost and

disregard spatial correlations within imaging data. A novel method is proposed to solve these

issues.

Results: We introduce a novel method to incorporate spatial correlations into a VGWAS framework

for the detection of potential AD biomarkers. To consider the characteristics of AD, we first present

a modification of a simple linear iterative clustering method for spatial grouping in an anatomically

meaningful manner. Second, we propose a spatial–anatomical similarity matrix to incorporate cor-

relations among voxels. Finally, we detect the potential AD biomarkers from imaging and genetic

data by using a fast VGWAS method and test our method on 708 subjects obtained from an

Alzheimer’s Disease Neuroimaging Initiative dataset. Results show that our method can successful-

ly detect some new risk genes and clusters of AD. The detected imaging and genetic biomarkers

are used as predictors to classify AD/normal control subjects, and a high accuracy of AD/normal

control classification is achieved. To the best of our knowledge, the association between imaging

and genetic data has yet to be systematically investigated while building statistical models for clas-

sifying AD subjects to create a link between imaging genetics and AD. Therefore, our method may

provide a new way to gain insights into the underlying pathological mechanism of AD.

Availability and implementation: https://github.com/Meiyan88/SASM-VGWAS.

Contact: huangmeiyan16@163.com or 1271992826@qq.com

1 Introduction

Alzheimer’s Disease (AD), a common form of dementia in elderly

people, gradually destroys brain regions that are responsible for

memory, learning, thinking and behavior (Alzheimer’s Association,

2016). Before dementia is clinically diagnosed, pathologic processes

leading to this progressive neurodegenerative disorder begin

(Chauhan et al., 2015). Therefore, the early detection of AD may

largely improve the treatment of AD, and many groups focus on

finding AD biomarkers in different ways (Ning et al., 2018; Zhang

et al., 2014). Various biomarkers have been investigated for AD de-

tection through different techniques, such as structural brain mag-

netic resonance imaging (MRI) (Frisoni et al., 2010), positron
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emission tomography (PET) (Santi et al., 2001), cerebrospinal fluid

(CSF) (Mattsson et al., 2009) and genetic data (Lambert et al.,

2013). AD is characterized by specific brain structural changes and

genetic risk factors (Ning et al., 2018; Weiner et al., 2015). On the

one hand, measurements of structural changes based on brain MRI

images have commonly been used for AD-associated analysis, indi-

cating that MRI can contribute to the understanding of AD-related

neural changes (Chauhan et al., 2015; Huang et al., 2017b; Ning

et al., 2018; Zhuo et al., 2018). On the other hand, AD risk is

affected by genetic variants an individual carries, which can be

measured accurately from birth (Lambert et al., 2013). As such,

detecting AD biomarkers from structural brain MRI and genetic

data is a potential way for the early prediction, diagnosis and treat-

ment of AD (Ning et al., 2018; Zhang et al., 2014).

Imaging genetics has emerged as a new field to detect potential

imaging and genetic biomarkers of AD and help discover remark-

able but hidden associations between causal genes and specific varia-

tions in brain regions in AD for developing new treatments,

monitoring treatment effectiveness and shortening the duration of

clinical trials (Chauhan et al., 2015; Huang et al., 2015, 2017; Stein

et al., 2010). To date, the main approach of detecting genetic effects

on structural brain MRI images in imaging genetics is voxel-wise

genome-wide association study (VGWAS), which is applied to detect

potential biomarkers of diseases by combining multiple phenotypic

variables (e.g. voxels in an imaging space) and whole genomes [e.g.

single nucleotide polymorphism (SNP)] (Huang et al., 2015; Li

et al., 2012; Stein et al., 2010). In contrast to methods involving can-

didate phenotypes or genotypes, VGWAS does not require prior

knowledge of disease pathology to select candidate phenotypes and

genotypes; thus, VGWAS can reduce the probability of missing im-

portant genes and brain clusters (Huang et al., 2015). However, sev-

eral problems existing in VGWAS should be considered. First,

running VGWAS poses remarkable computational challenges be-

cause it usually runs genome-wide (NG � 106 known variants) asso-

ciations with signals at millions of locations (NV � 106) in the brain

(Huang et al., 2015, 2017). Specifically, elements in a search space

in VGWAS are about NGNV �1012ð Þ. To solve this problem and ac-

celerate the calculation of traditional VGWAS, we proposed a fast

voxel-wise genome-wide association analysis (FVGWAS) in our pre-

vious study (Huang et al., 2015).

Second, most VGWAS methods, including our FVGWAS

method, are standard voxel-wise methods that treat each voxel as an

individual unit and disregard the spatial correlations of imaging

data. With the inherent biological structure and function of objects,

imaging data are spatially correlated in nature and contain spatially

contiguous regions with sharp edges (Huang et al., 2015; Zhu et al.,

2014). Such spatial correlations can be essential for the accurate esti-

mation of VGWAS. Gaussian smoothing with a prefixed bandwidth

is a fast, easily adjusted and commonly used method to incorporate

imaging spatial correlations into VGWAS (Huang et al., 2019).

However, imaging data near the edges of important regions are usu-

ally blurred when Gaussian method is used, thereby leading to an in-

crease in the number of false positives and negatives and a decrease

in statistical accuracy (Li et al., 2012, 2013). Moreover, Li et al.

(2012) developed a multiscale adaptive regression method for the

spatial analysis of imaging data in VGWAS and found that their

method is more effective than traditional VGWAS. However, the

computational cost of multiscale adaptive regression method is

higher than that of traditional VGWAS (Li et al., 2012), which is

not computationally feasible even for thousands of SNPs (Huang

et al., 2015). A Functional genome-wide association analysis

method (Huang et al., 2017) has also been presented to exploit

spatial correlations in imaging data, and this method effectively

improves the detection accuracy of AD biomarkers in VGWAS.

Therefore, spatial correlations in imaging data are important for

disease-associated biomarker detection in VGWAS.

In this study, we introduce an alternative strategy to incorporate

spatial correlations into a VGWAS framework for potential AD bio-

marker detection. On the one hand, spatial correlations between

voxels are important in VGWAS. On the other hand, anatomical

features related to AD should be considered when spatial correla-

tions are incorporated into the VGWAS framework because AD is

highly associated with specific brain structural changes (Ning et al.,

2018; Weiner et al., 2015). Therefore, our goal is to incorporate the

spatial correlations based on not only the neighboring voxels in

imaging data but also the anatomical features associated with AD to

improve the biomarker detection ability of the VGWAS method. To

achieve this goal, we first introduce a modification of simple linear

iterative clustering (SLIC) (Achanta et al., 2012) for spatial grouping

in an anatomically meaningful manner. We also propose a spatial–

anatomical similarity matrix (SASM) to incorporate correlations

among voxels. Finally, we detect potential AD biomarkers from

imaging and genetic data by using the FVGWAS method, which can

considerably reduce the computational cost. To validate our

method, we perform a set of experiments on 708 subjects, and each

subject has a total of 193 275 voxels and 501 584 SNPs. In the

experiments, we successfully detect some new AD-associated risk

genes, such as SPON1, CTNNA2, CTNND2 and ZNF407. We then

use the detected imaging and genetic biomarkers as predictors to

classify AD/normal control (NC) subjects and achieve a high accur-

acy of AD/NC classification. To the best of our knowledge, no re-

search has systematically investigated the association between

imaging and genetic data while building statistical models for classi-

fying AD subjects to create a link between imaging genetics and AD.

Therefore, the proposed method may provide a new way to gain

insights into the underlying pathological mechanism of AD.

2 Materials

In preparation for our analysis, the genetic data and structural MRI

scans of the human brain were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.

usc.edu/). ADNI was launched in 2003 by the National Institute on

Aging, the National Institute of Biomedical Imaging and

Bioengineering, the Food and Drug Administration, private pharma-

ceutical companies and non-profit organizations, as a $60 million,

5-year public–private partnership. The primary goal of ADNI has

been to test whether serial MRI, PET and other biological markers

are useful in clinical trials of mild cognitive impairment (MCI) and

early AD. Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as well as

lessen the time and cost of clinical trials. ADNI subjects aged 55–90

from over 50 sites across the USA and Canada participated in the re-

search and more detailed information is available at www.adni-info.

org.

Data from 708 (421 men and 287 women, age 75.61 6

6.76 years) subjects with the structural MRI data of 164 AD, 346

MCI and 198 NC provided by the ADNI dataset were used. These

MRI data were obtained on a 1.5 T MRI scanner by using a 3D

MPRAGE sequence in the sagittal plane. The scan parameters were

as follows: repetition time was 2400 ms; inversion time was

1000 ms; flip angle was 8� and field of view was 24 cm with a

2 M.Huang et al.
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256 � 256 � 170 acquisition matrix (x-, y- and z-dimensions),

which yielded a voxel size of 1.25 � 1.26 � 1.2 mm3.

The standard processing approach that we used for the MRI

data involved the following: (i) use of a non-parametric non-uniform

bias correction (N3) for image intensity inhomogeneity correction

(Sled et al., 1998); (ii) skull stripping (Wang et al., 2014) and warp-

ing a labeled template to each skull-stripped image for the removal

of the cerebellum (aBEAT in version 1.0, http://www.nitrc.org/proj

ects/abeat); (iii) segmentation of each brain image into four different

tissues, namely, white matter (WM), gray matter (GM), CSF and

ventricles, via the FAST method (Zhang et al., 2001) (FAST in

FMRIB Software Library version 5.0, https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/); (iv) registration of all images to the common template by

using the 4D-HAMMER method proposed in a previous study

(Shen and Davatzikos, 2004) (HAMMER in version 1.0, https://

www.nitrc.org/projects/hammer/); (v) use of the deformation field

to generate the RAVENS maps (Davatzikos et al., 2001), which can

be used to quantify the local volumetric group differences in the

whole-brain volume and in each tissue type (WM, GM, CSF and

ventricles) and (vi) automatically labeling of 90 regions of interest

(ROIs) on the template (Tzourio-Mazoyer et al., 2002) defined as

labeled map A, which would be used in supervoxel calculation

(Section 3.2.1).

We used the Human 610-quad Beadchip (Illumina, Inc., San

Diego, CA) to acquire the genotype data of 818 subjects, including

620 901 SNPs, which were provided by the ADNI dataset. To avoid

the effect of population stratification, we utilized 749 Caucasians

selected from the 818 subjects with genetic data and imaging data at

the baseline in our study. Then, we performed quality control proce-

dures (QCPs), including the steps presented below, to exclude unsat-

isfactory data through (i) gender check; (ii) population stratification;

(iii) sibling pair identification; (iv) call rate check for each subject

and each SNP marker; (v) marker removal according to minor allele

frequency and (vi) Hardy–Weinberg equilibrium test. Next, we

screened the SNPs for the following: (i) at least 95% retention val-

ues; (ii) at least 95% minor allele frequency and (iii) Hardy–

Weinberg equilibrium P > 10�6. We inputted the remaining missing

genetic data as the modal value. After conducting the quality control

procedures and SNP screening, we retained 708 subjects, and each

subject had 501 584 SNPs during the subsequent analysis.

3 Method

Figure 1 presents an overview of our proposed method that consists

of two modules for detecting potential biomarkers. The first module

(Fig. 1a) shows the process of incorporating voxel correlations in

imaging data. The second module (Fig. 1b) demonstrates how to de-

tect biomarkers from imaging and genetic data by using the

FVGWAS method. The details of our proposed method are provided

in the following subsections.

3.1 Mathematical formulation
We consider n independent subjects, and each subject is associated

with a set of imaging data, clinical variables and genetic markers.

Let V be a selected brain region that contains NV voxels, and let v

be a voxel in V (v 2 V). Let G be the set of genetic loci containing

NG SNPs and let g be a locus in G (g 2 G). For each individual

i i ¼ 1; . . . ; nð Þ, the following parameters are considered: an NV � 1

vector of image measurement denoted by Y i ¼ fyi vð Þg, a D� 1 vec-

tor of clinical covariates xi ¼ xi1; . . . ; xiDð ÞT , and an L� 1 vector

zi gð Þ ¼ zi1 gð Þ; . . . ; zil gð Þ; . . . ; ziL gð Þð ÞT for genetic data at locus g,

where zil and L are the l-th genetic data and the dimension of genetic

data, respectively.

Fig. 1. Overview of our proposed method. (a) Incorporating voxel correlations in imaging data. (b) Detecting biomarkers from imaging and genetic data by using

the FVGWAS method
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3.2 SASM
To incorporate correlations between voxels into VGWAS, we intro-

duce a SASM to incorporate the correlations between voxels into

VGWAS:

W ¼ w v; v0ð Þ; v; v0ð Þ 2 V
� �

; s:t:w v; v0ð Þ � 0;
X

v02N vð Þ
w v; v0ð Þ ¼ 1 (1)

where N vð Þ is a set of neighboring voxels of v and w v; v0ð Þ represents

the similarity between voxel v and the voxel v0 in N vð Þ. The size of

N vð Þ should be determined to calculate SASM. Although defining

w v; v0ð Þ for all combinations of v; v0ð Þ is conceptually possible, hold-

ing such a large matrix with O N2
V

� �
in memory is computationally

difficult for most personal computers. However, small neighboring

voxel sets, such as 6 or 26 neighboring voxels, may lose some crucial

correlations between voxels because disease-induced structural

changes may occur in some relatively large regions of the brain

(Huang et al., 2017). Therefore, considering the anatomy know-

ledge associated with AD, we first propose a modified SLIC super-

voxel segmentation method (Zhuo et al., 2018) to determine the

neighboring voxel set N vð Þ for each voxel v. Subsequently, we pro-

vide the formulation of SASM with the calculated neighboring voxel

sets. Notably, either modified SLIC or SASM exploits the disease-

related information across all subjects to generate N vð Þ vectors,

each of which consists of weights between voxel v and the voxels in

N vð Þ. These weights are in turn fed back into the MRI images for

each subject to incorporate spatial correlations. Specifically, n MRI

images share weights at the same voxel site.

3.2.1 Anatomically constrained supervoxels for N vð Þ definition

Determining the size of N vð Þ can be treated as a voxel grouping

problem. Applying the image preprocessing step (Section 2), we ob-

tain the grouping of voxels in the template space based on anatomic-

al structures. However, anatomy-based grouping may be suboptimal

because information may be hidden in subregional parts of the anat-

omy (Zhuo et al., 2018). Supervoxel method has been successfully

used in medical image analysis (Fan et al., 2007; Zhuo et al., 2018),

which can be used to group voxels into perceptually meaningful

atomic regions. Therefore, we incorporated the supervoxel method

and anatomical boundaries into the VGWAS framework to explore

voxel correlations.

In this study, we introduce a modification of the SLIC supervoxel

segmentation method as mentioned in a previous study (Zhuo et al.,

2018), which considered anatomical boundaries. In contrast to most

supervoxel methods, which group voxels based on image intensity,

we use the correlation of the voxel intensity with the disease label,

which is widely used in AD prediction to obtain the correlation be-

tween images and disease labels (Rathore et al., 2017; Zhuo et al.,

2018), to group voxels. For each voxel site, we first compose a vec-

tor with the intensity values at the voxel site across all subjects.

Then, we compute the Pearson correlation coefficient (PCC) be-

tween this vector and the disease labels, obtaining a volume of cor-

relation values at each voxel. We use AD and NC subjects rather

than MCI subjects to calculate the PCC volume because MCI can be

regarded as an intermediate stage between AD and NC and has the

characteristics of both AD and NC (Liu et al., 2015). To prevent the

supervoxels from crossing anatomical boundaries, we introduce an

additional cost to the cost function proposed in the SLIC method.

For each supervoxel k, we define the modified cost function as

follows:

min
Ck

D P;A;Ck; vð Þ ¼ min
Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc P;Ck; vð Þ

m

� �2

þ ds Ck; vð Þ
S

� �2

þ da A;Ck; vð Þ

s

(2)

where dc P;Ck; vð Þ ¼ kP vð Þ � P vCkð Þk2 and ds Ck; vð Þ ¼ kv� vCk
k2

are the content-based and spatial distances defined in SLIC, respect-

ively (Achanta et al., 2012). k � k2 represents the Euclidean norm,

and P is the input image, whose image measurement is PCC instead

of intensity. In addition, Ck and vCk
represent the voxel set of k and

the supervoxel center of k, respectively, and S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NV=K

3
p

is the sam-

pling interval for 3D volume, where K is the supervoxel number. m

is a constant value and can be used to weigh the relative importance

between content similarity and spatial proximity (Achanta et al.,

2012). When m is large, spatial proximity is important, and the

resulting supervoxels are compact. When m is small, the resulting

supervoxels are tightly to image boundaries (Achanta et al., 2012).

In our study, we empirically set m ¼ 40 in accordance with previ-

ously described methods (Wang et al., 2016) and add the cost

da A;Ck; vð Þ, which is the distance based on an available anatomical

label map A. To constrain a supervoxel to be part of one anatomical

region, we define da A;Ck; vð Þ as follows:

da A;Ck; vð Þ ¼ 0 if A vð Þ ¼ A vCkð Þ
1 otherwise

	
(3)

where A vð Þ and A vCkð Þ are the anatomical labels at voxel v and

supervoxel center vCk
, respectively. Each voxel v is assigned to Ck

that minimizes the cost function D in Equation (2). Therefore, in ac-

cordance with the definitions of Equations (2) and (3), each v is

assigned to Ck that satisfies the condition A vð Þ ¼ A vCkð Þ. For the

anatomical label map A, we use an automatically labeled result on

the template (Section 2). With the calculated Ckf gK
k¼1 of K supervox-

els, the neighboring voxel set N vð Þ of each voxel v can be defined

as N vð Þ ¼ Ck n v; v 2 Ckf g.

3.2.2 Formulation of SASM

After determining the N vð Þ, how to calculate the shared weight

w v; v0ð Þ is a problem to be solved. As we mentioned above, patho-

logical changes of AD in the brain are commonly observed in a re-

gion not merely in an isolated voxel. Moreover, the voxels within

the same region, such as our proposed supervoxels, show similar

values in terms of intensities in MRI. The similarities among voxels

in a region depend on distance and intensity. Thus, proposing SASM

is reasonable to formulate the similarities between voxel v and the

voxel v0 in N vð Þ. Moreover, the neighboring voxel set N vð Þ of voxel

v is defined on the basis of anatomical map A, which labels the AD-

related ROIs. Hence, our proposed SASM considers both similarities

among voxels and anatomical features associated with AD. In

SASM, the weight w v; v0ð Þ decreases when the distance or the differ-

ence in intensities between voxel v and v0 increases. We define

w v; v0ð Þ as follows:

w v; v0ð Þ ¼ w
�

v; v0ð ÞP
v02N vð Þw

�
v; v0ð Þ

with w
�

v; v0ð Þ ¼ I1 v; v0ð ÞI2 v; v0ð Þ (4)

where I1 v; v0ð Þ ¼ exp �kv� v0k2=h1

� �
and I2 v; v0ð Þ ¼

exp �K v; v0ð Þ=
�

h2Þ. Moreover, K v; v0ð Þ is a function of v; v0ð Þ and

can be defined as follows:

4 M.Huang et al.
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K v; v0ð Þ ¼ median2 yi vð Þ � yi v0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Y vð Þ � Y v0ð Þ
� �q

8<
:

9=
;

i¼1���n

0
B@

1
CA: (5)

In Equations (4) and (5), I1 v; v0ð Þ represents the similarity of dis-

tance between voxels v and v0, while I2 v; v0ð Þ represents the similar-

ity of intensity. In contrast to I1 v; v0ð Þ, I2 v; v0ð Þ across all subjects are

usually different from each other. To minimize the effect of outliers

and maintain consistency in the MRI images, we use the squared

median of normalized differences in intensities to describe the uni-

fied difference in intensities between voxels v and v0.

On a macroscopic level, the shared weights w that formulate the

similarities among voxels based on anatomical boundaries, reflect

the spatial correlations within the imaging data by virtue of I1 and

I2. With the calculated weights w v; v0ð Þ, voxel correlation informa-

tion can be incorporated by using the following formulation:

yi;w vð Þ ¼
X

v02N vð Þ
w v; v0ð Þyi vð Þ: (6)

3.3 FVGWAS framework
The FVGWAS method is proposed to efficiently carry out whole-

genome analyses of whole-brain data (Huang et al., 2015). Here, we

briefly introduce the FVGWAS framework, and further details are

provided in another study (Huang et al., 2015).

A heteroscedastic linear model can be written as follows:

yi;w vð Þ ¼ xT
i bw vð Þ þ zi gð ÞTcw g; vð Þ þ ei;w vð Þ (7)

where bw vð Þ and cw g; vð Þ are coefficients associated with non-genet-

ic predictors and genetic effects, respectively, and ei;w vð Þ is a meas-

urement error.

In model (7), a hypothesis testing problem on cw g; vð Þ can be

expressed as follows:

H0 : cw g; vð Þ ¼ 0 versus H1 : cw g; vð Þ 6¼ 0 for each g; vð Þ (8)

where H0 indicates that genetic data are not associated with image

data. To test if cw g; vð Þ ¼0, we can calculate a Wald-type statistic:

W g; vð Þ ¼ c�w g; vð ÞT Covðc�w g; vð ÞÞ
o�1

c�w g; vð Þ
	

(9)

where c�w g; vð Þ is the ordinary least squares estimate of cw g; vð Þ.
However, the calculation of W g; vð Þ for all g; vð Þ pairs is computa-

tionally intensive. To solve this problem, we introduce a global sure

independence screening (GSIS) procedure via the FVGWAS method

to speed up the calculation. The key idea of the GSIS procedure in

FVGWAS is to detect potentially causal genetic markers by using a

dimension reduction method and an approximation method (Huang

et al., 2015). Specifically, a global Wald-type statistic can be used to

eliminate many loci with weak or even no genetic effects because

only a small number of causal genetic markers are expected to con-

tribute to the image measurements (Huang et al., 2015, 2017):

W gð Þ ¼ N�1
V

X
v2V

W g; vð Þ: (10)

We can calculate the P-values of W gð Þ in all of the loci by using

an approximation method (Huang et al., 2015; Zhu et al., 2012).

Finally, we can select the top N0 loci with the highest

�log10 pð Þ � values, and the selected N0 loci can be denoted as G
�

0 ¼

g
�

0; . . . ; g
�

N0

n
and used to construct a candidate significant locus set.

For the detection procedure, two wild bootstrap methods are

used. The first one is to detect the imaging phenotypic measures

(voxels) that are significantly associated with the selected N0 loci.

The second one is to detect the subregions or clusters of the imaging

phenotype significantly associated with the selected N0 loci.

Significant voxel–locus pairs for VGWAS should be selected, but

such detection is less meaningful for the proposed method, whose

voxel correlation information has been incorporated into the

FVGWAS framework. Important genetic markers should be associ-

ated with relatively large ROIs in biologically (Huang et al., 2015).

Therefore, existing VGWAS methods for imaging phenotypes focus

on the first detection step, whereas we are particularly interested in

the second detection step. In a previous work (Huang et al., 2015),

wild bootstrap method can prevent the repeated analyses of

simulated datasets. As such, it can considerably reduce computa-

tional time.

4 Experimental results

In the ADNI data analysis, we use RAVENS maps as phenotypes to

evaluate the performance of the proposed method with 708 subjects

(164 AD, 346 MCI and 198 NC). Each subject has 193 275 voxels

and 501 584 SNPs. The clinical covariates include age, gender, inter-

cept, whole-brain volume and top five principal component scores

for the SNPs. In the experiments, we first optimize the parameters in

the proposed method with 164 AD and 198 NC subjects.

Thereafter, we perform the proposed method with the optimized

parameters on imaging and genetic data of 708 subjects to detect

AD-related biomarkers. In the following sections, we will provide

the details of parameter optimization and biomarker detection of

the proposed method.

4.1 Parameter optimization
In this study, K is a crucial parameter utilized to determine the size

of N vð Þ for each v. However, selecting an optimal K is difficult be-

cause we have no ground truth of the biomarkers associated with

AD in imaging and genetic data. The accurate prediction and diag-

nosis of AD is the final target of AD-associated biomarker detection.

Therefore, we may consider using the detected biomarkers as predic-

tors of AD diagnosis. We choose K from 500; 1000; 1500; 2000;

2500 and 3000 through a 5-fold cross-validation method and evalu-

ate the proposed method on 164 AD and 198 NC subjects, exclud-

ing MCI subjects, to classify these subjects into AD and NC.

Specifically, we divide all AD and NC subjects into five subsets with

the same proportion of each class label. For each run of the 5-fold

cross-validation, we successively choose one of the five subsets as a

testing set and combine the remaining four subsets to be a training

set. By varying the values of K in the proposed method, we can ob-

tain different fCkgK
k¼1 in the training set. Thereafter, we can utilize

the obtained fCkgK
k¼1 to calculate N vð Þ, w v; v0ð Þ, and yi;w vð Þ.

Subsequently, we can apply the FVGWAS method to detect AD-

associated imaging and genetic biomarkers and use these two types

of biomarkers, respectively, as predictors to train a classifier. With

the trained classifiers, we use the detected biomarkers in the testing

set as classifier inputs to obtain the classification results. Therefore,

for each K value, we can obtain five classification results for the

5-fold cross-validation and achieve a classification accuracy by aver-

aging the five classification results. The value of K with the best

mean classification accuracy on the testing set will be chosen. In this

study, we apply a support vector machine (SVM) as a classifier, con-

sidering its typical use for AD classification (Liu et al., 2015; Zhang
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et al., 2014; Zhuo et al., 2018). To make a fair comparison, we care-

fully design and select the parameters with optimal performance in

each SVM classifier in the experiments. Similarly, the parameters h1

and h2 in weight w v; v0ð Þ calculation are chosen from 1; 2; . . . ; 10f
through cross-validation on AD and NC subjects.

In the experiments, we vary the value of K from 500; 1000;

1500; 2000; 2500 and 3000 and then record the corresponding AD/

NC classification results. Parameters h1 and h2 in w v; v0ð Þ calcula-

tion are fixed at 4 and 2, respectively. Moreover, loci number N0 in

the candidate significant locus set is set to 1000. Figure 2 shows the

classification results of imaging and genetic biomarkers with differ-

ent K values. Figure 2 depicts that the classification accuracy is

improved by an increase in K, except when SNP is used as a predict-

or at K ¼ 1000. In addition, the classification accuracy reaches its

highest value when K ¼ 2000. Thus, K is fixed at 2000 for the sub-

sequent experiments.

Furthermore, parameters h1 and h2 are varied from

1; 2; . . . ; 10f to test the classification performance. In this experi-

ment, K and N0 are fixed to 2000 and 1000, respectively. Figure 3

presents the experimental results. The figure further shows that the

classification accuracies of different h1 and h2 with clusters or loci

as predictors slightly fluctuate in a small range with the varieties of

h1 and h2, indicating that the classification accuracies achieved by

the proposed method are generally stable with respect to these two

parameters. Therefore, h1 and h2 are set to 4 and 2, respectively,

which have a slightly higher classification accuracy than other values

in using cluster or loci as predictors, in the subsequent experiments.

4.2 Comparison with FVGWAS method
The proposed method is compared with the FVGWAS method to

evaluate the effectiveness of incorporating voxel correlations into

the FVGWAS framework. In this experiment, K, h1 and h2 in the

proposed method is fixed at 2000, 4 and 2, respectively, and a 5-

fold cross-validation method is used to evaluate the proposed

method and the FVGWAS method in AD/NC classification. The

SVM classifier is also applied to obtain the classification results. For

fair comparison, the SVM parameters are carefully designed and

selected to achieve the optimal performance of these two methods.

In this experiment, N0 is set to 1000 for different methods. Table 1

shows the classification accuracy of the proposed method and the

FVGWAS method. Table 1 also shows that the performance of the

proposed method is better than that of the FVGWAS method with

either imaging data (clusters) or genetic data (SNP) as predictors

(pP < 0:5, pair t-test).

4.3 Biomarker detection
In this section, our goal is to examine the genetic effect of each of

the 501 584 SNPs on the whole brain and detect some potential bio-

markers associated with AD. To achieve this goal, we use the pro-

posed method on the RAVENS maps and SNP data of 708 subjects

(164 AD, 346 MCI and 198 NC) and set K, h1 and h2 to 2000, 4

and 2, respectively.

With the GSIS procedure, the P-values of W gð Þ of all of the loci

are computed. Figure 4 shows the Manhattan and QQ plots of the

VGWAS results of the RAVENS maps. The Manhattan plot

(Fig. 4a) is a plot of the �log10 pð Þ � values of the association statis-

tic on the y-axis versus the chromosomal position of the SNP on the

x-axis. SNPs with high �log10 pð Þ � values represent their high asso-

ciations with traits (ADNI brain image measurement in this study).

As shown in Figure 4a, 20 SNPs are associated with the whole brain

Fig. 3. Accuracy (measured as area under the Receiver Operating

Characteristic curves) of different h1 and h2 with clusters (a) or loci (b) as pre-

dictors in AD/NC classification

Table 1. Accuracy (ACC) and area under the receiver operating

characteristic curves (AUC) of the proposed method and the

FVGWAS method

Cluster as predictor SNP as predictor

ACC AUC ACC AUC

Proposed

method

0.90160.031 0.95260.012 0.81060.060 0.88360.078

FVGWAS 0.84660.065 0.92260.026 0.75860.070 0.82360.075

Fig. 4. (a) Manhattan and (b) QQ plots of ADNI whole-brain VGWAS

Fig. 2. Accuracy (measured as area under the receiver operating characteris-

tic curves) of different K with clusters or loci as predictors in AD/NC classifica-

tion. Clusters and loci are the significant voxel set and the significant loci

detected by the proposed method, respectively
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in the GSIS procedure at the 10�5 significance level. Moreover, the

QQ plot displays the observed association �log10 pð Þ � values for all

SNPs on the y-axis versus the expected uniform distribution of

�log10 pð Þ � values under the null hypothesis of no association on

the x-axis. As shown in Figure 4b, the observed �log10 pð Þ � values

fit well with the expected �log10 pð Þ � values from the null hypoth-

esis for most of the �log10 pð Þ � values. The �log10 pð Þ � values in

the upper-right tail of the distribution actually show a significant de-

viation suggesting strong associations between these SNPs and the

whole brain. Table 2 lists the top 50 SNPs associated with the whole

brain, including the corresponding SNPs, chromosome (CHR) IDs,

base pair (BP) values, P-values and gene. Among the top 50 SNPs,

the following genes are detected: SPON1 is related to brain connec-

tions and implicated in many neurological and psychiatric disorders

(Jahanshad et al., 2013); CTNNA2 is associated with human cere-

bral cortex, and its loss in neurons leads to defects in neurite stabil-

ity and migration (Schaffer et al., 2018); CTNND2 is involved in

neuronal development and closely related to chromatin biology

(Turner et al., 2015); and ZNF407 is linked to intellectual disability

(Ren et al., 2013).

For the detection procedure, the raw P-values of W g; vð Þ are first

calculated to detect significant voxel–locus pairs. N0 is set as either

1000 or 2000, and the number of bootstrapped samples is fixed at

1000. At the 10�5 significance level, the number of significant

voxel–locus pairs based on the raw P-values of W g
�
; v


 �
against the

top N0 SNPs in G
�

0 is shown in Figure 5a and b. Figure 5c and d

presents the number of significant voxel–locus pairs based on the

corrected P-values of W g
�
; v


 �
against the top N0 ¼ 1000 SNPs at

0.5 and 0.8 significance levels, respectively. Second, all possible clus-

ters and their associated corrected P-values for the top N0 ¼ 1000

SNPs are calculated to detect significant cluster–locus pairs. The

number of bootstrapped samples is fixed at 1000. Table 3 lists four

selected SNPs, which have the four largest numbers of significant

cluster–locus pairs at the 0.5 significance level.

Figure 6 shows some slices of �log10 pð Þ � values of significant

clusters corresponding to a selected SNP (rs11891634). In Figure 6,

symmetric clustering across the left and right hemispheres is

inspected in the significant clusters. For most brain regions, brain

structures are highly symmetric between hemispheres. Therefore,

symmetric associations of SNPs and clusters can be biologically

observed. Table 4 lists several major clusters and their correspond-

ing SNPs in remarkable cluster–locus pairs detected by the proposed

method. Among these clusters, hippocampus, olfactory cortex, para-

hippocampal gyrus, superior temporal gyrus, middle temporal

gyrus, inferior temporal gyrus, amygdala, precuneus, fusiform, pos-

terior cingulate and caudate nucleus are closely related to AD (Ning

et al., 2018; Weiner et al., 2015).

5 Conclusion and discussion

In this study, a novel VGWAS method was proposed, and the fol-

lowing contributions were presented. First, the modification of the

SLIC method was introduced to spatial grouping in an anatomically

meaningful manner. Second, a SASM was incorporated into the

VGWAS framework to increase the power of detecting potential AD

biomarkers. Third, the detected biomarkers were used as predictors

to classify AD/NC subjects and could create a link to AD. The pro-

posed method was evaluated on a total of 193 275 voxels and

501 584 SNPs. Experimental results showed that the proposed

method had the potential to detect some AD-related biomarkers and

achieved high accuracy in AD/NC classification. Therefore, the pro-

posed method was a useful tool for AD prediction, diagnosis and

monitoring.

In the proposed method, K is a crucial parameter used to deter-

mine the size of N vð Þ for each v. In general, a small K corresponds

Table 2. ADNI whole-brain VGWAS: top 50 selected SNPs associated with the whole brain. ‘- -’ in the table indicates the item was not found

to correspond to genes

SNP CHR BP P-value Gene SNP CHR BP P-value Gene

rs11815438 10 62 501 737 7.05E-08 LOC105378320 rs11731185 4 177 123 850 1.49E-05 �-

rs11891634 2 65 926 939 7.14E-08 �- rs17017837 2 79 995 904 1.50E-05 CTNNA2

rs1060373 10 62 554 500 2.18E-07 CDK1 rs1146888 13 76 887 683 1.51E-05 �-

rs2480271 10 132 061 197 3.33E-07 �- rs1405933 2 140 829 708 1.90E-05 �-

rs10402592 19 11 256 887 8.49E-07 SPC24 rs11717277 3 54 220 871 1.99E-05 CACNA2D3

rs5994978 22 34 988 594 1.51E-06 �- rs989707 4 5 210 283 2.10E-05 STK32B

rs7001339 8 69 855 507 2.00E-06 LINC01592 rs853363 6 14 138 858 2.13E-05 �-

rs4924156 15 37 688 630 2.17E-06 LOC105370772 rs1014824 18 64 667 804 2.15E-05 �-

rs12001550 9 120 672 883 2.30E-06 �- rs1528663 11 13 967 222 2.19 E-05 �-

rs13419007 2 145 043 653 3.12E-06 GTDC1 rs2830706 21 28 487 190 2.35 E-05 �-

rs17182599 14 22 051 519 3.44E-06 �- rs971752 4 103 224 534 2.36 E-05 SLC39A8

rs11872654 18 2 164 155 3.81E-06 �- rs16857117 2 11 205 421 2.74 E-05 �-

rs9645752 12 12 544 266 4.84E-06 BORCS5 rs1325998 10 4 092 494 2.94 E-05 LOC107984195

rs1448575 2 6 386 393 6.59E-06 �- rs2697880 8 37 227 905 3.06 E-05 �-

rs2514323 8 99 236 899 7.98E-06 NIPAL2 rs2443568 8 99 254 045 3.11 E-05 NIPAL2

rs2935713 10 123 432 188 9.48E-06 �- rs933153 21 28 486 172 3.13 E-05 �-

rs1534446 6 154 625 192 9.88E-06 IPCEF1 rs1998450 1 86 745 177 3.30 E-05 LOC105378824

rs4129156 18 25 437 752 9.93E-06 �- rs9367805 6 14 019 157 3.33 E-05 �-

rs14067 13 114 110 660 1.01E-05 DCUN1D2 rs1767282 1 112 357 101 3.40 E-05 KCND3

rs472276 1 244 112 606 1.02E-05 LOC339529 rs4490086 18 64 648 278 3.77 E-05 �-

rs9382934 6 14 040 480 1.16E-05 �- rs13179953 5 11 179 193 3.89 E-05 CTNND2

rs2834077 21 34 422 738 1.32E-05 �- rs522793 6 10 802 955 3.99 E-05 MAK

rs1852755 11 13 996 686 1.35E-05 SPON1 rs8095030 18 72 602 588 4.09 E-05 ZNF407

rs11640843 16 66 425 176 1.35E-05 CDH5 rs1078497 7 37 606 532 4.62 E-05 �-

rs10261484 7 22 583 326 1.37E-05 �- rs6700343 1 150 149 016 4.69 E-05 LOC105371433
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to a large supervoxel and causes a smooth effect on a contiguous re-

gion. However, brain MRI images are usually expected to contain

spatially contiguous regions or effect regions with relatively sharp

edges (Huang et al., 2015; Zhu et al., 2014). A small K may also

smoothen sharp edges in some instances. Moreover, optimizing K is

difficult because no evidence supports the ground truth of AD bio-

markers in imaging and genetic data. In this study, AD/NC classifi-

cation accuracy was used as the measurement to select the optimized

K. The classification accuracy achieved the highest score when

K ¼ 2000. Therefore, a moderate-sized K was more suitable for con-

sidering spatially contiguous regions and effect regions with relative-

ly sharp edges in the proposed method than other K values.

In most existing VGWAS methods, imaging phenotypes are used

as traits to directly identify phenotype-associated genetic data.

However, the identified genetic data and the used imaging data may

or may not be associated with diseases (e.g. AD in this study), and

further studies should be performed to confirm or refute a suggestive

link to a disease (Xu et al., 2017). In our study, we applied the

detected imaging and genetic biomarkers as predictors for AD/NC

classification, considering that the accurate prediction and diagnosis

of AD were the final targets of AD-associated biomarker detection.

In Table 1, all of the classification accuracy measurements of the

proposed method with spatial–anatomical correlations were higher

than those of the FVGWAS method, indicating the effectiveness of

incorporating spatial–anatomical correlations into the proposed

method. We used either a cluster or a SNP as a predictor instead of

combining them as predictors in this experiment because the

detected clusters and SNPs were considerably associated with one

another, indicating that redundant information may be present be-

tween them. Therefore, combining clusters and SNPs elicited few

effects on improving the classification accuracy. However, the ac-

curacy of the proposed method with cluster as a predictor

(AUC ¼ 0.952 6 0.012) was comparable with that of several recent-

ly proposed AD classification methods (Ning et al., 2018; Zhuo

et al., 2018). The accuracy of the proposed method with SNP as a

predictor outperformed some relevant methods (Ning et al., 2018;

Zhang et al., 2014), which also involve SNP as a predictor to classify

subjects into AD and NC.

In the biomarker detection experiments, some new risk genes

and clusters were found, and they might be beneficial to the early

prediction, diagnosis and treatment of AD. Among the top 50 SNPs

listed in Table 2, the following genes were detected: SPON1 (CHR

11), which is related to neurological and psychiatric disorders;

CTNNA2 (CHR 2), which is associated with the human cerebral

cortex; CTNND2 (CHR 5), which is implicated in neuronal devel-

opment and closely related to chromatin biology and ZNF407

(CHR 18), which is associated with intellectual disability.

Therefore, these genes are considerably linked to the occurrence of

AD. Structural changes related to the subregions of the brain as

detected by our proposed method might be affected by the progres-

sion of AD (Table 4). The hippocampus, the olfactory cortex and

the parahippocampal gyrus are connected to memory. The superior

temporal gyrus is associated with sound and speech processing. The

middle temporal gyrus is related to writing and reading. The inferior

temporal gyrus is one of the higher levels of the ventral stream of vis-

ual processing and associated with the representation of complex

object features. The amygdala plays a primary role in the processing

of memory, decision-making and emotional responses. The precu-

neus is involved with episodic memory, visuospatial processing,

reflections upon self and aspects of consciousness. The fusiform is

associated with color recognition, word and body recognition. The

posterior cingulate is linked to emotion and memory. The caudate

nucleus is relative to memory and learning, and is found to have a

significant volume reduction in patients with AD (Jiji et al., 2013).

Several issues should be addressed in our future research. First,

the proposed method is still a single SNP analysis framework

(Huang et al., 2015, 2017). As such, the power of VGWAS may be

undermined by unobserved causal SNPs, correlation between adja-

cent SNPs and SNP–SNP interactions (Greenlaw et al., 2017; Wang

et al., 2012). Analyzing the association between a single SNP set and

individual phenotypes may help improve the power of VGWAS

(Thompson et al., 2013). Therefore, the proposed method should be

extended to the analysis of the association between a SNP set and

the whole brain. Second, considering that various characteristics of

Fig. 5. ADNI whole-brain VGWAS: the number of significant voxel–locus pairs

based on the raw P-values of W g
�
; v


 �
at the 10�5 significance level corre-

sponding to the top (a) N0 ¼ 1000 and (b) N0 ¼ 2000 SNPs; the number of sig-

nificant voxel–locus pairs based on the corrected P-values of W g
�
; v


 �
at (c)

0.5 and (d) 0.8 significance levels corresponding to the top N0 ¼ 1000 SNPs

Table 3. ADNI whole-brain VGWAS: significant cluster–locus pairs

at 0.5 significance level

SNP Number of

cluster–locus pairs

Max cluster

size

P-value of

the max cluster

rs11891634 1 12 117 0.16

rs2480271 1 11 428 0.33

rs7001339 1 11 077 0.47

rs12001550 1 11 321 0.37

Fig. 6. ADNI whole-brain VGWAS: selected slices of �log10 pð Þ � values for

significant clusters corresponding to a SNP (rs11891634)
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image phenotypes can be obtained from different neuroimaging

modalities (e.g. functional MRI, PET and diffusion tensor imaging),

we may achieve better results when different image phenotypes are

combined with our research. Third, the proposed method can be

used to detect genetic biomarkers that affect neuroimaging pheno-

types. Some AD-associated latent factors, such as education level

(Frost et al., 2016) and memory scores (Yan et al., 2015), have been

completely disregarded in this study. However, incorporating these

factors within genome-wide data can be challenging because of the

loss in statistical power and computational efficiency (Huang et al.,

2017). Therefore, our proposed method should be extended to the

evaluation of the effects of these factors.
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